If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=17
We move all terms to the left:
a^2-(17)=0
a = 1; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·1·(-17)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{17}}{2*1}=\frac{0-2\sqrt{17}}{2} =-\frac{2\sqrt{17}}{2} =-\sqrt{17} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{17}}{2*1}=\frac{0+2\sqrt{17}}{2} =\frac{2\sqrt{17}}{2} =\sqrt{17} $
| 3x+4÷10=x÷5 | | 5=x+1/2 | | 7/5y-2=5/4y | | 32x+3=26x+12 | | 8-2k=16-k | | (1/5x)-(1/4x)=-17/60 | | 1/5x-1/4x=-17/60 | | 2x+12=4×=10 | | 5(x)3/2=40 | | -12x-6=10-8x | | 3x/2+3=2x | | 9=-x+5 | | Y²-25y+2000=0 | | 8x+7=6x+37 | | 1/4z+1=10(3z)+z | | 27+8n=8(n+3) | | 7(x^2-35)=0 | | -4x+7=-3x-21 | | W^2+11a+30=0 | | 4+12+x=20 | | k/3 =5/4 | | 720=2x^2+12x-36 | | 4068+130.5=300x | | x²-3x-4+12/x=0 | | 1/2x+2/3x=1/3 | | 4068+130.5x=10071 | | 4/5m-1/7=2/3 | | 8y-20=2y+4 | | (x+8)(x+-3)=0 | | Y=1/2x-4x=24 | | 3(p+1)2^2=81 | | (5)x+x=84 |